King Abdulaziz University
 Physics Department
 Course of Physics 110 in the Second Semester of 1430 H Solving Problems

Solving Problems from Chapter 1

Changing Units

(Q1-1) How many microns make up 1 Km ?

Answers of (Q1):

$$
\begin{aligned}
& 1 \mu \mathrm{~m}=1 \mathrm{x} 10^{-6} \mathrm{~m} \\
& 1 \mathrm{~km}=10^{3} \\
& 1 \mathrm{~km}=\frac{1 \mu \mathrm{~m} \times 10^{3} \mathrm{~m}}{1 \times 10^{-6} \mathrm{~m}}=1 \mathrm{O}^{9} \mu \mathrm{~m}
\end{aligned}
$$

(Q1-2) What fraction of a centimetre equals $1.0 \mu \mathrm{~m}$?
Answer of (Q2) is:

$$
\begin{array}{r}
\text { fraction of } 1 \mathrm{~cm}=1 \times 10^{-2} \mathrm{~m} \\
1 \mu \mathrm{~m}=1 \times 10^{-6} \mathrm{~m}
\end{array}
$$

Therefore

$$
\text { fraction } 1 \mathrm{~cm}=\frac{1 \times 10^{-2} \mathrm{~m}}{1 \times 10^{-6} \mathrm{~m}}=10^{+^{4}} \mu \mathrm{~m}
$$

(Q1-3) How many micron in 1 Yd if 1 inch= 2.54 cm
An answer of (Q3) is:

1 inch $=2.54 \mathrm{~cm}$
$\because 1 \mathrm{ft}=12$ inch
$\therefore 1 \mathrm{Yd}=3 \mathrm{fts}=3 \times 12$ inch
And
$\therefore 1 \mathrm{Yd}=36$ inches $=36 \times 2.54 \mathrm{~cm}$

$$
\begin{aligned}
& =91.44 \mathrm{~cm}=91.44 / 100=0.9144 \mathrm{~m} \\
& =0.9144 \times 10^{6} \mu \mathrm{~m}=9.14410^{5} \mu \mathrm{~m}
\end{aligned}
$$

Q(1-4) The SI standard of length is based on:
a. wavelength of light emitted by $\mathbf{H g}^{189}$
b. wavelength of light emitted by $\mathbf{K r}^{86}$
c. A precision meter stick in Paris
d. The speed of light
$Q(1-5)$ Which of the following is closest to a yard in length?
a. 0.01 m
b. 0.1 m
c. 1 m
d. 100 m
$Q(1-5)\left(5.0 \times 10^{4}\right) \times\left(3.0 \times 10^{6}\right)$ equal to:
a. 1.5×10^{9}
b. 1.5×10^{10}
c. 1.5×10^{11}
d. 1.5×10^{12}

Q(1-6) A sphere with a radius of 1.7 cm has a volume of:
a. $2.1 \times 10^{-5} \mathrm{~m}^{3}$
b. $9.1 \times 10^{-4} \mathrm{~m}^{3}$
c. $3.6 \times 10^{-3} \mathrm{~m}^{3}$
d. $5.2 \mathrm{~m}^{3}$

Q(1-7) A sphere with a radius of 1.7 cm has an area of:
a. $2.1 \times 10^{-5} \mathrm{~m}^{2}$
b. $9.1 \times 10^{-4} \mathrm{~m}^{2}$
c. $3.6 \times 10^{-3} \mathrm{~m}^{2}$
d. $5.2 \mathrm{~m}^{2}$

Solving Problems from Chapter 2
Straight Line Motion:

Q2-1 (a) if the partical started to move on X axis from point equal to 5 m to the point equal 12 m what is the magnitude and direction of the displacement ($\Delta \mathrm{x}$)?
(b) if started to move from $X_{1}=5 \mathrm{~m}$ toward $X_{2}=1 \mathrm{~m}$ what is the magnitude and direction of the displacement (Δx)?

Answer of (a) is:
The displacement (Δx) $=\mathbf{x}_{2}-x_{1}=12-5=+7 m$
The magnitude is $\mathbf{7 m}$ and +ve result indicates that the motion is in the +ve direction.

Answer of (b) is:
When the practical moves from $x_{1}=5 \mathrm{~m}$ to $x_{2}=1 \mathrm{~m}$
Then $\quad \Delta x=x_{2}-x_{1}=\mathbf{5 - 1}=-4 m$
The negative result (-ve) indicates that the motion is in the negative direction as shown in this Figure (1-2).

Figure (2-1)
(Q2-2) What is the average velocity $\mathbf{V}_{\text {ave }}$ from the graph that drawing between the position x (meter) and the time t (second)

Answer of (Q2-2) is:
The average velocity has the same sign as the displacement because it has the same direction

$$
V_{a v g}=\frac{\Delta \chi}{\Delta t}=\frac{6}{2}=3 \mathrm{~m} / \mathrm{s}
$$

(Q2-3) You drive a beat - up pacing-up truck along a straight rode for 8.4 km at $70 \mathrm{~km} / \mathrm{h}$, at which point the truck runs of gasoline and stops. Over a next 30 min , you walk an-other 2 km farther along the rode to gasoline station. (a)What is your overall displacement from the beginning over your drive to your arrival at the station?

The answer (a) is:

$X_{1}=0, X_{2}=8.4$,
Therefore, $\Delta x=8.4-0=8.4 \mathrm{~km}$
Δx to station $=8.4+2=10.4 \mathrm{~km}$
(Q2-2b) What is the time interval Δt from the beginning of your drive to your arrival at the station

Answer (2b) is:
$70 \mathrm{~km} / \mathrm{h}=8.4 \mathrm{~km} / \Delta \mathrm{t}=0.12 \mathrm{~h}$, The time interval to the station is $\Delta t=0.12+0.50=0.62 \mathrm{~h}$
(Q2-3) The position of an x axis is given by:

$$
X=7.8+9.2 t-2.1 t^{3}
$$

when x in meter and time in second, what is the velocity At $t=3.5 \mathrm{~s}$? (a) Is velocity constant or is it continuously changing?

The Answer is:

Firstly the Velocity V is
$V=\frac{d X}{d t} \quad$ and the unit of \mathbf{V} is \mathbf{m} / \mathbf{s}
And $\quad X=7.8+9.2 t-2.1 \mathbf{t}^{3}$

Note at the time $t=3.5 \mathrm{~s} \mathrm{~V}$ is:

$$
\frac{d X}{d t}=\frac{d\left(7.8+9.2 t-2.1 t^{3}\right)}{d t}=9.2-6.3(3.5) 2=-68 \mathrm{~m} / \mathrm{s}
$$

We already substitute by $\mathbf{t}=3.5 \mathrm{~s}$ after differentiation
The velocity depends on t, and so is continuously changing.

Acceleration

(Q2-4) A particle's position on x axis in fig 2-1 is given by $X=4-27 \mathbf{t}+\mathbf{t 3}$, (a) what is the acceleration a

Figure (2-1)

Answer (a) is:

$$
\mathrm{V}=\frac{\mathrm{dx}}{\mathrm{dt}}=\frac{\mathrm{d}}{\mathrm{dt}}\left(4-27 \mathrm{t}+\mathrm{t}^{3}\right)=-27+3 \mathrm{t}^{2}
$$

So.
$\mathrm{V}=\left(27+3 \mathrm{t}^{2}\right)$
Therefor

$$
\mathbf{a}=\frac{\mathrm{d} v}{\mathrm{dt}}=\frac{\mathrm{d}}{\mathrm{dt}} \cdot\left(27+3 \mathrm{t}^{2}\right)=6 \mathrm{t}
$$

(Q2-4b) is there ever a time when $\mathrm{v}=0$?

Answer (b) is:
$v=-27+3 t 2$
$0=-27+3 t 2$
So, $3 t 2=27$ and,
$t^{2}=\frac{27}{3}=9$
$t= \pm 3 s$

Thus the velocity is zero both 3 s before and 3 s after the clock reads 0 .

